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Using molecular dynamics computer simulation we compute gas-liquid phase coexistence curves for the
Stockmayer fluid in an external electric field. We observe a field-induced shift of the critical temperature �Tc.
The sign of �Tc depends on whether the potential or the surface charge density is held constant assuming that
the dielectric material fills the space between capacitor plates. Our own as well as previous literature data for
�Tc are compared to and interpreted in terms of a simple mean field theory. Despite considerable errors in the
simulation results, we find consistency between the simulation results obtained by different groups including
our own and the mean field description. The latter ties the sign of �Tc to the outside constraints via the electric
field dependence of the orientation part of the mean field free energy.
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I. INTRODUCTION

Over many years the phase behavior of dipolar liquids has
created significant interest �see, in particular, the following
reviews �1–4��. Aside from the practical importance many
apparently simple model systems have been studied both
theoretically and via computer simulation because of the rich
and difficult phase behavior due to the addition of dipole-
dipole interaction to simple short-ranged fluid potentials. In-
teresting questions are, for instance, the discrepancy between
the “easy” prediction and computer observation of the
isotropic-to-ferroelectric transition in models of dipolar flu-
ids and their elusiveness in real low molecular weight liquids
possessing rather large molecular dipole moments �e.g.,
�5,6��. Another question is whether dipole-dipole interaction
alone, i.e., without another contribution to particle-particle
attraction, can lead to vapor-liquid coexistence �e.g., �7��.

Here we focus on the gas-liquid �g-l� critical point shift,
i.e., �Tc, in a model dipolar liquid caused by an external
electric field. The number of simulation studies computing
the field-dependent shift of the g-l critical parameters for
dipolar fluids is relatively small �8–11� �see also �12�� even
though the much larger number of theoretical works address-
ing this phenomenon attests to its general and sustained in-
terest �selected examples are �13–22��. In particular the au-
thors of the last of these references, i.e., Ref. �22�, emphasize
an apparent inconsistency regarding the sign of �Tc in the
literature discussing the g-l critical temperature shift under
the influence of an electric field.

In this work we present simulation results for the critical
point shift in a Stockmayer fluid in response to an external
electric field if the reduced dipole moment is small. We also
look in detail at the available results obtained by other
groups via computer simulation and compare them to a
simple mean field model based on Onsager’s description of
liquid dielectrics, which, in our opinion, resolves the incon-
sistency mentioned above.

The paper is structured as follows. Section II discusses the
molecular dynamics �MD� method. Important details can be
found in the Appendix. Section III presents a simple mean
field theory useful for the conceptual understanding. The re-
sults are compiled in Sec. IV. Section V is the conclusion.

II. SIMULATION METHOD

We carry out MD computer simulations of the Stock-
mayer fluid in an external electric field. The total potential
energy of the system is

U = ULJ −
1

2
m� iTijm� j +

1

2

p� i
2

�
− m� i · E� i

ext −
1

2
gm� i · M� i �1�

�making use of the summation convention�. Here ULJ is the
sum over all Lennard-Jones �LJ� pair potentials,

ULJ =
1

2 �
i,j=1�i�j,rij�rcut�

N

4�rij
−12 − rij

−6� + ULJ,lrc, �2�

between Stockmayer particles i and j separated by the dis-
tance rij. Notice that for the LJ parameters we assume �
=�=1. Only particles within the cutoff distance rcut interact
explicitly. Interactions from beyond rcut in the case of ULJ
are included via the usual long-range correction, ULJ,lrc
=−�8� /3�N�rcut

−3 , where � is the particle number density. The
remaining terms in Eq. �1� are due to the interaction between
point dipole moments,

m� i = 	� i + p� i, �3�

located on every LJ site i. The dipole moments are in units of
�4�
o��3 �
o: vacuum permittivity�. Here 	� i is a permanent
point dipole moment and p� i is an induced point dipole mo-
ment computed via

p� i = �E� i, �4�

where � is a point polarizability associated with every LJ
site. Even though our present results are almost exclusively
for �=0, we include the case ��0 for sake of latter refer-
ence. E� i is the total electric field experienced by the particle
located at site i given by
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E� i = Tijm� j + E� i
ext + gM� i. �5�

The quantity Tij is the dipole tensor whose Cartesian com-
ponents �� ,�=1,2 ,3� are

Tij
�� = 3

rij
�rij

�

rij
5 − ���

1

rij
3 �6�

�i� j�. E� i
ext is the external field as it is felt at site i. The

external field is assumed constant throughout the volume V
of the system. However, we keep the index i as a reminder
that the relation between a true external field E� ext, e.g., gen-
erated by capacitor plates between which the system is
placed, and E� i

ext does depend on how long-range interactions
are handled in the simulation.

Notice that two scenarios are particularly relevant: �i�
fixed charge density on the capacitor plates; �ii� fixed poten-
tial. Case �i� corresponds to E� ext held constant. Here E� ext is
the electric field in a slit separating the dielectric from a
capacitor plate. Case �ii� corresponds to E� �� held constant.
Here E� �� is the average or Maxwell field inside the dielec-
tric.

As before for the LJ interactions we use a cutoff rcut
around each particle. Inside the cutoff all dipole-dipole inter-
actions are computed explicitly. The electrostatic effects on
dipole i due to dipoles beyond rcut are included in the reac-
tion field approximation via the terms − 1

2gm� i ·M� i in Eq. �1�
and gM� i, the reaction field, in Eq. �5�, where

g =
2�
 − 1�
�2
 + 1�

1

rcut
3 , �7�

and M� i is the total dipole moment inside the cutoff sphere
surrounding particle i. 
 is the static dielectric constant in the
system under given conditions computed via

�
 − 1��2
 + 1�
9


E� i
ext =

1

rcut
3 �M� i� . �8�

The details of the above can be found in the Appendix.
Additional quantities derived via the total potential energy

are the force and the torque on particle i, i.e.,

F� i = F� i,LJ + �
j=1�j�i,rij�rcut�

N 	 3

rij
5 �m� i�r�ij · m� j� + m� j�r�ij · m� i�

+ r�ij�m� i · m� j�� −
15

rij
7 �r�ij · m� i��r�ij · m� j�r�ij
 , �9�

and

N� i = m� i � E� i = 	i � E� i, �10�

and the pressure

P = PLJ −
1

2V
�m� iTijm� j� + P
, �11�

where P
 is given by

P
 = −
3�

V
� 1

�2
 + 1�2�m� i · A� i +
m� i · M� i

rcut
3  �


��
� �12�

with A� i=E� �� if E�� is held constant and A� i=−2E� ext if Eext is
held constant instead. We note that potential energy, force,
torque, and virial, in the absence of the external field, were
worked out by Vesely �23�. We note also that our expression
for the reaction field contribution to the pressure differs from
the corresponding contribution in Vesely’s work because of
the neglect of the density dependence of 
 in the aforemen-
tioned reference. Notice in this context that the internal virial
may be obtained also via −3V�U /�V. Notice also that the
Gibbs ensemble technique used by the other groups listed
below in the context of Table I does not require the explicit
calculation of the pressure.

The translational motion of the particles is governed by
r�̈i=F� i, whereas the equation of motion governing the dipole

TABLE I. �Tc at constant E�� or Eext: simulation results and
mean field theory.

	 E�� �Tc
sim Ref. �Tc

MF

0.5 2.0 0.010 This group 0.010

0.5 6.0 0.069 This group 0.063

0.5 10.0 0.106 This group 0.105

0.5 20.0 0.147 This group 0.159

1.0 0.5 0.005 �11� 0.002

1.0 1.0 0.031 �8� 0.018

1.0 1.0 0.018 �9�
1.0 1.0 0.017 �11�
1.0 1.0 0.019 This group

1.0 1.5 0.034 �9� 0.042

1.0 1.5 0.034 �11�
1.0 2.0 0.086 �8� 0.069

1.0 2.0 0.053 �9�
1.0 2.0 0.052 �11�
1.0 2.0 0.057 This group

1.0 3.0 0.101 �8� 0.126

1.0 3.0 0.108 This group
�2 0.4 0.004 �9� 0.010
�2 0.8 0.038 �9� 0.039
�2 1.2 0.073 �9� 0.080

2.0 1.0 0.12 �10� 0.132

2.5 1.0 0.154 �8� 0.128

2.5 2.0 0.265 �8� 0.358

2.5 5.0 0.525 �8� 1.059

	 Eext �Tc
sim Ref. �Tc

MF

0.5 2.0 −0.025 This group −0.021

0.5 4.0 −0.084 This group −0.083

1.0 1.0 −0.014 This group −0.014

1.0 2.0 −0.058 This group −0.056
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orientation follows via N� i=I��̈ i. Here I is the moment of
inertia with respect to the momentary axis of rotation. The

angle of rotation vector �� i can be replaced by 	� i using ��̇ i

�	� i=	�̇ i and ��̇ i ·	� i=0. The resulting equation of motion for
	� i can be found in Sec. 8.2 of Ref. �24� or in the Appendix of
Ref. �25�. The equations of motion are integrated using the
velocity Verlet algorithm. Temperature, which here is in units
of kB /
 �kB: Boltzmann’s constant�, is controlled via the
weak coupling method of Berendsen et al. �26�. Notice that
the rotational temperature is given by �2	2�−1�	�̇ 2�=T. At
equilibrium the rotational temperature must be equal to the
translational temperature of course. Notice also that here we
set the moments of inertia with respect to the major axes
equal to one in LJ units. Induced dipole moments may be
calculated at every MD step using the iteration scheme
p� i

�k+1�=�E� i�p� i
�k��. The dielectric constant is calculated via Eq.

�8�. G-L phase coexistence curves are obtained by the same
method as introduced previously �27,28�; i.e., phase coexist-
ence is established using the Maxwell construction method
applied to simulation isotherms at different temperatures.
The long-range cutoff, rcut, varies between 4.5 and 5.5.

III. SIMPLE MEAN FIELD DESCRIPTION

A simple mean field description of the g-l transition may
be constructed as follows. The orientation partition function,
including all dipolar interactions, is given via

QD �
N!

��N�!
���

4�
N

exp�− T−1�
�

N�uD�cos ���� . �13�

Here the dipoles are sorted in equal size solid angle cones
�� whose orientation in space is labeled via the index �.
uD�cos ��� is given by Eq. �A11� with 	� ·E� cav=	Ecav cos �.
Application of Stirling’s approximation leads to the ori-
entation distribution of the dipoles given via f���
=lim��→0�4� /���N� /N�exp�K cos �� with K=	Ecav / ��1
−�g�T�. Thus, we obtain for the relevant free energy

�FD

NT
= − ln� sinh�K�

K
 −

1

2�1 − �g�T
�g	2 + �Ecav

2 � .

�14�

Notice that it is the first term which accounts for the entropy
loss due to orientation in the field. Notice also that in order to
evaluate �FD we need 
 which we compute by solving Eq.
�A13� numerically. Our total free energy includes the nondi-
polar interactions via the van der Waals description, i.e.,

�FvdW

NT
= ln� �/�3�c

o�
1 − �/�3�c

o�
 −

9

8

�/�3�c
o�

T/�3Tc
o�

. �15�

Here �c
o and Tc

o refer to the critical points of the pure LJ
system. Thus, �F=�FD+�FvdW is the free energy contribu-
tion governing g-l phase separation.

A similar approach was used by Zhang and Widom to
map out the global phase behavior of dipolar fluids �17�.
These authors describe the dipolar interactions in terms of

the Debye model which differs from the Onsager model used
here. In Debye’s model the local field includes a term pro-
portional to �m� � instead of the reaction field term propor-
tional to m� as in Eq. �A7� �for a discussion of this difference
see Ref. �29��. We prefer Onsager’s approach because of its
clearly identifiable approximations. The above-mentioned
�m� � proportionality in particular leads to an isotropic liquid-
to-ferroelectric liquid transition in the Debye model which is
absent in the Onsager model. However, here we are inter-
ested in the effect of an electric field on the g-l transition
under conditions for which there is no isotropic liquid-to-
ferroelectric liquid transition, no association of dipoles into
reversible aggregates, usually chains, and no inhomogeneity
in the system. The effects of chain formation on the g-l tran-
sition were discussed previously in Refs. �27,28�. In general,
Onsager’s model is a good description of dipolar interaction
in simple systems if the parameter T / ��	2� is around or
larger than unity �29� �assuming �=0�.

IV. RESULTS

Figure 1 illustrates the dependence of the static dielectric
constant as obtained via mean field theory on the external
field strength E� ext. Notice that rcut here refers to Eq. �7�. In
the mean field approach rcut is the radius of the cavity con-
taining a single dipole. Here rcut=0.8, which we use through-
out in all mean field calculations, turns out to yield the over-
all best agreement between mean field theory and simulation.
However, Eq. �7� is used also to estimate the long-range
contribution to the electrostatic potential energy. In this case
rcut is the radius of the much larger cutoff sphere in the
simulation. Figure 2 shows a comparison of the effect of the
electric field for the two cases E� ext=const and E� ��=const.
Temperature and density are close to the respective critical
values for 	=1 and zero field. Figure 3 compares the density
dependence of the static dielectric constant from the simula-
tion to corresponding mean field results.

Figure 4 shows the average dipole-dipole interaction at
low densities as obtained by simulation with �=0. We may
compare this to the leading contribution to �uDD� for weakly
correlated dipoles in a weak field

�uDD� �
�

2
4��

r�R

drr2�uDD�orient

� −
4��

9

	4

TR3�1 +
1

1125
�	Eext

T
4� , �16�

where �uDD�orient is the orientational average in the case of
weakly correlated dipoles. An analogous calculation carried
out for large Eext yields to leading order

�uDD� � −
8��

15

	4

TR3�1 − � T

	Eext4� . �17�

Both limiting laws are included in Fig. 4. For larger densities
the above assumptions are no longer valid and the form of
�uDD� quickly deviates from the above limiting laws. Figure
5 shows simulation results for �uDD� for selected conditions,
in particular at higher densities, in comparison to corre-
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sponding curves obtained by computing the first term in Eq.
�A11�. Qualitatively the Onsager theory agrees with the
simulation. Quantitatively we find growing deviation be-
tween simulation and the Onsager model as Eext increases.

Figure 6 shows g-l coexistence curves obtained in this
work via MD simulation. The values for �Tc=Tc�	 ,E�
−Tc�	 ,0�, where E=Eext or E=E��, are listed in Table I. The
overall comparison between the simulation results and the
mean field theory is quite good. In particular we note that the
sign of �Tc does depend on whether Eext or E�� is held
constant. In the latter case the sign is positive whereas in the
former it is negative. Figure 6 also reveals a slight shift of
the critical density from lower densities for large E=E�� to
higher densities at large E=Eext. For 	=0.5 this shift cer-
tainly is within the scatter of the results, but for 	=1.0 the
shift is clearly discernible.

A detailed plot of the reduced mean field critical tempera-
ture for 	=0.5 is shown in Fig. 7 �upper panel�. We note
again that the direction of the critical temperature shift de-
pends on whether the field outside the dielectric is held con-
stant �fixed charge density� or whether the average field in
the dielectric is held constant �fixed potential� while density

0 2 4 6 8 10
Eext

2

3

4

5
Ε

0 2 4 6 8 10
Eext

2

3

4

5

6
Ε

FIG. 1. Mean field dielectric constant 
 vs the external field
Eext. Upper panel: �=0.3, 	=2, �=0, and T=2,4 ,6 �from top to
bottom�. Lower panel: �=0.3, T=2, 	=1 �lower curve�, and 	=2
�upper curve�. Corresponding dashed curves with �=0.05
�rcut=0.8� instead of �=0.

��
�
�
�
�
�
�
�
�
�

�
� � �

��

�

�

�
�
�
�
���

�
� � �

0 10 20 30 40 50
E

1.2

1.4

1.6

1.8

2.0

2.2
Ε

Eext const

E��� const

FIG. 2. Static dielectric constant 
 vs field strength �	=1.0,
T=1.45, �=0.3123�. Symbols are simulation results. Crosses:
E=Eext; circles: E=E��. Note that 
 at E=0 was computed using
Eq. �9� in Ref. �29�. The solid lines are computed via mean field
theory.
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FIG. 3. Static dielectric constant 
 vs dipole number density �
�	=0.5, T=1.35�. Symbols: simulation results �squares: Eext=0;
up triangles: Eext=1; down triangles: Eext=2�. Lines �mean field
theory� from top to bottom: Eext=0,1 ,2.
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FIG. 4. Average dipole-dipole potential energy �uDD� vs
Eext�	=0.5, T=10�. Symbols: simulation results �squares: �
=0.02; up triangles: �=0.05; down triangles: �=0.1�. Lines: ap-
proximations according to Eqs. �16� and �17� with R=0.9 plotted to
where the correction term exceeds 10% of the leading term.
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or temperature changes. Notice that we do not include simu-
lation results for E=Eext at large field strength. This is be-
cause simulation snapshots at this field strength appear rather
inhomogeneous. Figure 7 �bottom panel� also shows a com-
parison between mean field theory and simulation in the case
of the critical density shift, ��c, as function of external field
strength, E, for 	=1.0. For E=Eext the quantitative agree-
ment is quite good, whereas for E=E�� it is qualitative only.

The sign of �Tc depending on the field held constant may
be understood as follows. Figure 8 shows the free energy as
function of volume �assuming N=100 particles� as obtained

via mean field theory. The solid �dashed� line corresponds to
E�� �Eext� held constant. The dotted line is the zero field
result. The temperature is below the critical temperature and
we observe a van der Waals loop. The two lower panels in
Fig. 8 show the attendant comparison for the orientation con-
tribution to the free energy according to the first term in Eq.
�14�, forient, and the contribution due to dipolar interaction
described by the second term in Eq. �14�, fDD. We notice that
the latter virtually remains unaltered whereas forient accounts
for the difference. Due to E� ext=
E� �� we find that constant
Eext implies a reduction in E�� when the density is increased
because 
 increases. Notice also that at this small field
strength 
 is basically independent of field strength. Because
of relation �A15� between E� �� and E� cav, which governs ori-
entation in the field, the quantity K in Eq. �14�, and therefore
the orientation, is reduced when E�� is reduced. This means
that for constant Eext the free energy contribution forient in-
creases with increasing density, which in turn diminishes the
van der Waals loop in comparison to the zero field case; i.e.,
�Tc is negative. The reverse is true when E� �� is held con-
stant. Here forient decreases with increasing density, which in

������� �

�

�

�
�

� � � � �

�����������
� � � � � � � � �

20 40 60 80 100
Eext

�0.08

�0.06

�0.04

�0.02

0.00
�uDD�

FIG. 5. Average dipole-dipole contribution to the potential en-
ergy �uDD� vs Eext for 	=0.5 and �=0. Open circles: simulation for
�=0.308 at T=1.351; crosses: simulation for �=0.8 at T=1.332;
lines: corresponding mean field results with rcut=0.8 given by the
first term in Eq. �A11�.
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FIG. 6. Coexistence curves in the temperature-number density-
plane based on simulation data. Top: 	=0.5; bottom: 	=1.0. In
both cases �=0. Stars denote critical points. The statistical error is
comparable to the size of the symbols.

� �
�

�
�

� �
�

0 5 10 15 20
E0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
Tc�Tc

o

�
�

�

�

�
�

�

0.5 1.0 1.5 2.0 2.5 3.0
E

	0.03

	0.02

	0.01

0.00

0.01

0.02

0.03

0.04

Ρc

E�Eext

E�E���

FIG. 7. Top: mean field critical temperature in units of the LJ
critical temperature vs E �specified for each curve� for 	=0.5. Sym-
bols are simulation results. Circles: E=E��; crosses: E=Eext. Bot-
tom: mean field critical density shift vs E for 	=1.0. Symbols are
simulation results. The statistical error again is comparable to the
size of the symbols. Circles: E=E��; crosses: E=Eext. In all cases
rcut=0.8, �c

o=0.3, Tc
o=1.32, and �=0.
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turn enhances the van der Waals loop in comparison to the
zero field case; i.e., �Tc is positive. Figure 9 shows this
effect in terms of the average projection of 	� /	 onto the
direction of the electric field for 	=0.5,1.0 and T=1.2. We
note that the agreement between the mean field theory and
the simulation is quite reasonable. We also note that in gen-
eral the scatter of the simulation results is larger for E� ext held
constant than for E� �� held constant. In both cases each point
is based on 1.5�106 MD steps �of which 106 were used for
averaging� and a step width of 3�10−3.

It is interesting to compare the electric field dependence
of the critical temperature discussed above with the textbook
expression in Ref. �14�, which is given by

�Tc �
1

8�
�c,E=0E2

��2
/��2�T=Tc,E=0,E

��2P/�� � T�Tc,E=0,E=0
. �18�

Provided that �Tc is small this result is rather general. The
field E in this case is E��. In order to compare with the result
in Fig. 7 we compute the denominator via van der Waals
theory, i.e., ��2P /���T�Tc,E=0,E=0=9 /4 �this number is
roughly half what one obtains based on the actual simulation
data�. The derivative in the numerator is computed using
Onsager’s expression for 
 in Eq. �A14� �with �=0�. The
result is the dashed line in Fig. 10 shown together with the
previous mean field result for constant E� �� taken from Fig.
7. The deviation on the high field side occurs because in the
Onsager theory 
 itself depends on E. This is explicitly ex-
cluded in the derivation of Eq. �18�.

Computer simulations of dipolar fluids in an external field
E� o usually are based on the following general approach. The
field couples to the system via −�i	� i ·E� o in the Hamiltonian
�cf. Eq. �1��. The sum extends over all dipole moments
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FIG. 8. Top: f =�F / �NT� vs volume V; middle: forient, accord-
ing to the first term in Eq. �14�, vs V; bottom: fDD, according to the
second term in Eq. �14�, vs V. In all cases 	=1.0, T=1.2, rcut

=0.8, �c
o=0.3, Tc

o=1.32, and �=0. Solid lines: E��=1 is held con-
stant; dashed lines: Eext=1 is held constant; dotted lines: zero field.
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FIG. 9. Top: Average orientation of the dipoles relative to the
electric field direction, �cos ��, vs density, �, for 	=1 and T=1.2.
Solid lines: mean field theory; open circles: simulation result for
E��=1; crosses: simulation result for Eext=1. Bottom: same as
above but for 	=0.5, E��=50, and Eext=50.
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	� i. Ewald summation is used in conjunction with a con-
tinuum �dielectric constant 
out� surrounding the sphere of
explicit summation. The average field in the liquid �Maxwell
field�, E� , and E� o are related via E� =E� o−4�P� / �2
out+1� �see
�30��. The polarization of the liquid of dipolar particles is
tied to the Maxwell field via 4�P� = �
in−1�E� , where 
in is
the dielectric constant of this liquid and thus E� o= �2
out

+
in� / �2
out+1�E� . In the literature discussed in the following
paragraph this is the method of choice.

The following is, to the best of our knowledge, a complete
list of simulation studies addressing the critical point shift
in a pure dipolar liquid. Stevens and Grest �8� have used
Gibbs ensemble Monte Carlo simulations of the Stockmayer
fluid in an applied field. They use tin-foil boundary condi-
tions, which according to the preceding paragraph means
E� o=E� =E� ��. In Ref. �9� the authors study the influence of
static electric fields on the vapor-liquid coexistence of dipo-
lar soft-sphere and Stockmayer fluids both via Gubbins-
Pople-Stell perturbation theory and simulation. Again the
applied field corresponds to E�� because the simulations
were performed in the reaction field geometry with conduct-
ing boundary conditions, where the spherical sample is em-
bedded in a continuum with infinite dielectric constant. In
Ref. �10� the authors carry out Gibbs ensemble simulations
of the Stockmayer fluid in an applied field E� o. The authors
compare the cases 
out= �tin-foil�, i.e., E� o=E� , 
out=
in,
i.e., E� o=3
in�2
in+1�−1E� , and 
out=1 �vacuum�, i.e., E� o

= �
in+2� /3E� . Even though the authors do not compute Tc
explicitly it is still possible to compare the relative order of
Tc for the three boundary conditions based on their Fig. 2;
i.e., Tc decreases in the order of discussion. Moreover
Tc�
out=� is certainly above the Tc in absence of a field,
whereas Tc�
out=
in� is close to Tc in absence of a field. This
is consistent with our Fig. 7, where the curves labeled E
=E�� and E=Ecav correspond to these two cases. Tc�
out
=1� appears to be below the zero field critical temperature.
This we expect according to our discussion of Fig. 7 because
E is decreased with increasing density. In Ref. �11� the au-
thors study hard-core dipolar Yukawa fluids using the
NPT-Monte Carlo plus test particle method in conjunction

with reaction field long-range corrections and conducting
boundaries for the dipole-dipole interactions. Their results
for �Tc correspond to E� o=E� =E� ��. In Table I we list the
simulation results for the shift of the critical temperature,
�Tc

sim, for various dipole moments and field strengths ex-
tracted from these references, supplemented by our own re-
sults, which all use the Stockmayer potential �with the ex-
ception of Ref. �11��. In addition we compute the
corresponding �Tc

MF from our simple mean field theory,
which overall is in fair agreement with the literature simula-
tion data. Notice that �Tc is small compared to Tc and that
the errors involved in the determination of Tc are often
enough comparable to �Tc.

The number of theoretical studies of g-l coexistence in
dipolar fluids under influence of an external electric field is
far more numerous. To our knowledge the first work dealing
with this problem in detail, aside from the above textbook
formula, is Ref. �16�. Using density-functional theory the
authors consider a sample of fluid in the field constrained to
have a spherical shape—apparently surrounded by vacuum.
They find a negative �T upon increasing Eo in agreement
with our above discussion and the 
out=1 result in Ref. �10�.
Other studies �19�, �Gubbins-Pople-Stell perturbation theory�
�20�, �density-functional theory� �21�, �modified mean field
density-functional theory� �22�, �self-consistent theory based
on mean spherical approximation for the dipolar Yukawa
fluid�, are more complicated, with the exception of Ref. �17�
already mentioned and usually less transparent but do not
yield obvious improvements over the simple theory used
here. The other simple theory, i.e., Ref. �17�, which is based
on the Debye model, seems to perform less well than the one
used here, which is based on Onsager’s refinement.

V. CONCLUSION

Using the MD technique we have computed g-l phase
coexistence curves for the Stockmayer fluid in an external
field. We observe a field-induced shift of the critical tempera-
ture �Tc. Whether the critical temperature is increased or
decreased depends on whether potential or surface charge
density are kept constant assuming that the dielectric mate-
rial fills the space between capacitor plates. Our own as well
as previous literature data for �Tc are compared to and in-
terpreted in terms of a simple mean field theory. Despite
considerable errors in the simulation results, we find that
there is consistency between the simulation results obtained
by different groups and the mean field description. The latter
ties the sign of �Tc to the outside constraints via the electric
field dependence of the orientation part of the mean field free
energy.

APPENDIX

The terms in Eq. �1� describing explicit interactions be-
tween point dipole moments as well as their interaction with
the external field, UDD, may be cast in various equivalent
forms. The probably most transparent one is

2 4 6 8 10 E���

0.05

0.10

0.15

�T

FIG. 10. Critical temperature shift �Tc vs E�� for 	=0.5. Solid
line: mean field theory developed in this work; dashed line: �Tc as
derived in Ref. �14�.
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UDD = −
1

2
	� iTij	� j − 	� i · E� i

ext −
1

2
p� i · E� i

�o�. �A1�

Here the first and second terms describe the interaction of
permanent dipoles with each other and with an external field.
The last term describes the total decrease in energy if a po-
larizable medium is brought in an electrical field with fixed
sources �e.g., Sec. 4.7 in Ref. �31��, i.e., the permanent di-
pole moments at fixed orientation plus the external field due
to likewise fixed sources. Here

E� i
�o� = Tij	� j + E� i

ext. �A2�

Equation �A1� may be rewritten as

UDD = −
1

2
m� i · E� i

�o� −
1

2
	� i · E� i

ext �A3�

or

UDD = −
1

2
	� i · E� i −

1

2
m� i · E� i

ext, �A4�

where E� i is given by Eq. �5� omitting the last term, or

UDD = −
1

2
m� iTijm� j +

1

2

p� i
2

�
− m� i · E� i

ext �A5�

�cf. Eq. �1��, making use of Eq. �4� of course.
In the context of computer simulation of dielectric con-

stants in soft condensed-matter systems UDD usually appears
as

UDD = −
1

2
	� iTijm� o,j − m� o,i · E� i

ext −
1

2
E� i

ext�AijE� j
ext� , �A6�

where m� o,j = ��ij −�Tij�−1	� i and Aij =���ij −�Tij�−1. Note
that here m� i=	� i+��Tijm� j +E� i

ext� is solved for m� j =m� o,j

+AijE� i
ext �32,33�.

Thus far the meaning of the external field, E� i
ext, is clear. It

is the external field felt at the position of dipole i in the
system. The need for specific boundary conditions, however,
makes it necessary to precisely specify the relation of E� i

ext to
the average field inside the dielectric material E� �� or to the
external field outside the dielectric material, E� ext. This is par-
ticularly relevant for the comparison to experiments or other
simulation results.

In the present case, the reaction field approach to long-
range interaction, we assume that every dipole moment in-
teracts explicitly with all other dipole moments within a
spherical shell of radius rcut. Beyond rcut there is a dielectric
continuum characterized by a dielectric constant 
. A simpli-
fied version of this situation has been studied by Onsager in
his famous paper on the electric moments of molecules in
liquids �34�. It is instructive to compare key expressions of
this continuum approach to the analogous expressions used
in the simulation. Onsager considers a single dipole moment
m� akin to m� i in Eq. �3�. The dipole moment m� feels an
electric field

E� in = gm� + E� cav. �A7�

The first term is the reaction field. Notice that in this case rcut
in Eq. �7� is the radius of the cavity occupied by the dipole m�
only. E� cav, the second term, is the so-called cavity field given
by

E� cav =
3


2
 + 1
E� ��, �A8�

where 
 is the dielectric constant of the surrounding medium
and E� �� is a homogeneous electric field at large distances
from the cavity due to external sources. The calculation of
E� in on the basis of Maxwell’s equations in dielectric media
can be found in Appendix A.2 of Fröhlich’s book on the
theory of dielectrics �35� as well as in the original paper of
course. In analogy to Eq. �A3� the potential energy of the
dipole at the center of the cavity is

uD = −
1

2
m� · �g	� + E� cav� −

1

2
	� · E� cav. �A9�

Using p� =�E� in, i.e., Eq. �4�, we may rewrite this into

uD = −
1

2
m� · g · m� +

1

2

p�2

�
− m� · E� cav. �A10�

This result corresponds to Eq. �A5�. Rewriting m� as m� = �1
−�g�−1	� +��1−�g�−1E� cav yields yet another expression, i.e.,

uD = −
1

2

g

1 − �g
	2 −

1

1 − �g
	� · E� cav −

1

2

�

1 − �g
E� cav

2 .

�A11�

This is the analog of Eq. �A6�, which generalizes Onsager’s
calculation to more than one dipole inside the cavity �32,36�.

It is worth noting that this form of uD is particular suitable
to compute �m� � because we merely need to compute �	� �
using the Boltzmann weight exp��1−�g�−1	� ·E� cav /T�. The
result is

�m� � = L�x�
	

1 − �g
e�z +

�

1 − �g
E� cav, �A12�

with L�x�=coth�x�−x−1 and x= �1−�g�−1	Ecav /T. Here e�z is
a unit vector parallel to the cavity field. Using the relation
��m� �= P� = �
−1�E� �� / �4��, where P� is the polarization, to-
gether with Eq. �A8� we obtain the result

1

4��

�
 − 1��2
 + 1�
3


E� cav = L�x�
	

1 − �g
e�z +

�

1 − �g
E� cav,

�A13�

and in the limit E��→0,

1

4��

�
 − 1��2
 + 1�
3


=
1

3T
� 	

1 − �g
2

+
�

1 − �g
.

�A14�

This formula obtained by Onsager relates the microscopic
dipole moment, 	, and polarizability, �, to the macroscopic
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dielectric constant 
 �34�. Its interesting relation to Debye’s
earlier equation �37� is discussed in Ref. �29�.

If we now consider a spherical cavity occupied by a num-
ber of dipole moments m� i we may directly obtain the reac-
tion field corrections to U in Eq. �1� and E� i in Eq. �5�. Notice
that the reaction field now becomes gM� i, where Mi
=� j�Vcav

m� j �including m� i�. Thus, comparing Eq. �A5� to Eq.
�A10� leads to Eq. �1� and comparing the first two terms in
Eq. �5� to Eq. �A7� leads to the full Eq. �5�.

In particular we also note that E� i
ext corresponds to E� cav.

Via Eq. �A8� we may therefore relate E� i
ext to E� ��. We now

consider a �small� cavity embedded in a homogenous slab of

dielectric material �like in the case of an infinite plate capaci-
tor filled with dielectric material�. Assuming a constant field
E� ext outside the dielectric and perpendicular to the adjacent
slab surfaces we have E� ext=
E� ��. Thus, we find

E� i
ext =

3

2
 + 1
E� ext. �A15�

Unless stated otherwise we will use this relation through-
out. Notice in particular that Eq. �8� follows via
�M� i� / �4�rcut

3 /3�= �
−1�E� �� / �4�� in conjunction with Eq.
�A15�.
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